圖根控制點是什么_什么是圖根導線?
特邀律師
一般是指在一定區域內,為大地測量、攝影測量、地形測量或工程測量建立控制網所進行的測量。 包括:①平面控制測量,是為測定控制點平面坐標而進行的;②高程控制測量,為測定控制點高程而進行的;③三維控制測量,為同時測定控制點平面坐標和高程或空間三維坐標而進行的。[1] 在測區內,按測量任務所要求的精度,測定一系列控制點的平面位置和高程,建立起測量控制網,作為各種測量的基礎,這種測量工作稱為控制測量。 在一定的區域內為地形測圖或工程測量建立控制網(區一般是指域控制網)所進行的測量工作。分為平面控制測量和高程控制測量。平面控制網與高程控制網一般分別單獨布設,也可以布設成三維控制網。 控制網具有控制全局,限制測量誤差累積的作用,是各項測量工作的依據。對于地形測圖,等級控制是擴展圖根控制的基礎,以保證所測地形圖能互相拼接成為一個整體。對于工程測量,常需布設專用控制網,作為施工放樣和變形觀測的依據。編輯本段平面控制網
常用三角測量、導線測量、三邊測量和邊角測量等方法建立。
三角測量
三角測量是建立平面控制網的基本方法之一。但三角網(鎖)要求每點與較多的鄰點相互通視,在隱蔽地區常需建造較高的覘標。
導線測量
導線測量布設簡單,每點僅需與前后兩點通視,選點方便,特別是在隱蔽地區和建筑物多而通視困難的城市,應用起來方便靈活。隨著電磁波測距儀的發展,導線測量的應用日益廣泛。
三邊測量
三邊測量要求丈量網中所有的邊長。應用電磁波測距儀測定邊長后即可進行解算。此法檢核條件少,推算方位角的精度較低。編輯本段邊角測量法
邊角測量法既觀測控制網的角度,又測量邊長。測角有利于控制方向誤差,測邊有利于控制長度誤差。邊角共測可充分發揮兩者的優點,提高點位精度。在工程測量中,不一定觀測網中所有的角度和邊長,可以在測角網的基礎上加測部分邊長,或在測邊網的基礎上加測部分角度,以達到所需要的精度。 小三角測量是在小測區建立平面控制網的一種方法,它多用于小測區的首級平面控制或三、四等三角網以下的加密,作為擴展直接用于地形測圖的圖根控制網(點)的基礎。此外,交會定點法也是加密平面控制點的一種方法。在2個以上已知點上對待定點觀測水平角,而求出待定點平面位置的,稱為;在待定點對3個以上已知點觀測水平角,而求出待定點平面位置的,稱為。 區域控制網同國家控制網相比較,前者控制面積較小,控制點的密度大,點位絕對誤差較小,精度較高。對于區域性平面控制網,根據測區面積、發展遠景、因地制宜、經濟合理的原則,在保證控制點的必要精度和密度的情況下,可以一次全面布網,也可以分級布網。分級布網通常先布設大范圍的首級網,再分階段進行低級控制點的加密。分級布網可以采用同一種測量方法,也可以采用不同的測量方法。設計時,應進行精度估算,測圖控制網要求全網的精度相對比較均勻。工程測量專用控制網,有時需在大范圍控制網內部建立較高精度的局部控制網。 區域控制網一般在國家控制網下加密,或以國家控制網為起算數據,以便統一坐標系統。若測區內無已知控制點可以利用時,可在網中任選一點用天文測量方法觀測其經緯度,換算成高斯-克呂格爾直角坐標,作為起算坐標。又觀測該點至另一點的天文方位角,將其換算成坐標方位角,作為起算方位角。在個別情況下,小測區也可采用假定坐標和磁北定向。三角網所需的起始邊長可用測距儀器直接測出。 當測區面積較小時,可將其視為平面。但在較大的區域內,則需考慮地球曲率的影響。為了合理的處理長度投影變形,應適當選擇投影帶和投影面。觀測成果一般應歸化到參考橢球面(或大地水準面)上,并按高斯正形投影計算3°帶內的平面直角坐標,以便盡量與國家坐標系統一致,有利于成果、成圖的相互利用。當測區平均高程較大時,為了使成果與實地相符,應采用測區平均高程面作為投影面。當測區中部遠離 3°帶中央子午線時,應以測區中部子午線為中央子午線,采用任意帶高斯正形投影(見高斯-克呂格爾平面直角坐標系)。 工程測量中的專用控制網,往往在某些方面有其特殊要求。在滿足這一要求的前提下,可以有若干個不同的布網方案提供選擇。隨著計算工具的發展,可以應用最優化方法的理論確定最佳的設計方案。編輯本段高程控制網
主要用水準測量和三角高程測量方法建立。
水準測量
用水準測量方法建立的高程控制網稱為水準網。區域性水準網的等級和精度與國家水準網一致。高程控制網可以一次全面布網,也可以分級布設。各等級水準測量都可作為測區的首級高程控制。首級網一般布設成環形網,加密時可布設成附合線路或結點網。測區高程應采用國家統一高程系統。小測區聯測有困難時,也可用假定高程。
三角高程測量
三角高程測量是根據兩點間的豎直角和水平距離計算高差而求出高程的,其精度低于水準測量。常在地形起伏較大、直接水準測量有困難的地區測定三角點的高程,為地形測圖提供高程控制。三角高程測量可采用單一路線、閉合環、結點網或高程網的形式布設。三角高程路線一般由邊長較短和高差較小的邊組成,起迄于用水準聯測的高程點。為保證三角高程網的精度,網中應有一定數量的已知高程點,這些點由直接水準測量或水準聯測求得。為了盡可能消除地球曲率和大氣垂直折光的影響,每邊均應相向觀測。編輯本段平差計算
建立平面控制網和高程控制網時,為了進行檢核和提高精度,常有一定數量的多余觀測(見測量平差)。對觀測值按最小二乘法原理進行平差計算,消除各觀測值之間的矛盾,求得最可靠的結果和評定測量結果的精度。對于觀測精度較低的控制測量,可采用近似法進行平差計算。
希望對你有幫助
控制點精度高 圖根點以控制點做出來的 碎步點根據圖根點來的!!!!
圖根與導線區別:
1、圖根:用于測繪地形圖碎部的控制導線。圖根點,用于測地形圖,由控制點引測的。
2、導線是將一系列測量控制點,依相鄰次序連接而構成折線形式的平面控制圖形。由一系列導線元素構成:導線點,是導線上的已知點和待定點;導線邊,是連接導線點的折線邊;導線角,指導線邊之間所夾的水平角。圖根點是在測量網中所使用的在繪制平面圖的時候要先在圖紙上面繪制控制點,根據這些控制點,再進行加密測繪而這些基礎的控制點即為圖根點。導線角按其位于導線前進方向的左側或右側而分別稱為左角或右角,并規定左角為正、右角為負;單一導線與導線網,其區別在于前者無結點,而后者具有結點。
圖根控制點的作用一是直接作測站點使用,進行碎部測量,二是作臨時增設測站點的依據。
單點解是RTK在工作的時候移動站和基準站互相不能聯系,只有移動站在工作,一般是沒有數據顯示的。浮點解精度又相對高一點,有時也勉強達到10CM以內的精度,如果測魚塘或者山地,這個精度也可以使用。固定解是最精確地數據,精度一般在3-5CM,基本上可以作為圖根點使用,也可以直接用來放樣。實際上是置信度的問題,主要是觀察數據的跳動,一般而言置信度高的肯定數據便宜不大,所以固定解是最好的,浮點解其次,而單點解是沒有進行過收斂計算的,所以不能作為依據,單點解一般是米級(一般一米多吧)誤差,浮點解是幾十公分(隨時間增減精度會越來越高,精度越來越好),固定解一般都是一兩公分。應用領域1,各種控制測量傳統的大地測量、工程控制測量采用三角網、導線網方法來施測,不僅費工費時,要求點間通視,而且精度分布不均勻,且在外業不知精度如何,采用常規的GPS靜態測量、快速靜態、偽動態方法,在外業測設過程中不能實時知道定位精度,如果測設完成后,回到內業處理后發現精度不合要求,還必須返測,而采用RTK來進行控制測量,能夠實時知道定位精度。如果點位精度要求滿足了,用戶就可以停止觀測了,而且知道觀測質量如何,這樣可以大大提高作業效率。如果把RTK用于公路控制測量、電力線路測量、水利工程控制測量、大地測量、則不僅可以大大減少人力強度、節省費用,而且大大提高工作效率,測一個控制點在幾分鐘甚至于幾秒鐘內就可完成。2,地形測圖過去測地形圖時一般首先要在測區建立圖根控制點,然后在圖根控制點上架上全站儀或經緯儀配合小平板測圖,現在發展到外業用全站儀和電子手簿配合地物編碼,利用大比例尺測圖軟件來進行測圖,甚至于發展到最近的外業電子平板測圖等等。都要求在測站上測四周的地貌等碎部點,這些碎部點都與測站通視,而且一般要求至少2-3人操作,需要在拼圖時一旦精度不合要求還得到外業去返測,采用RTK時,僅需一人背著儀器在要測的地貌碎部點呆上一二秒種,并同時輸入特征編碼,通過手簿可以實時知道點位精度,把一個區域測完后回到室內,由專業的軟件接口就可以輸出所要求的地形圖。這樣用RTK僅需一人操作,不要求點間通視,大大提高了工作效率,采用RTK配合電子手簿可以測設各種地形圖,如普通測圖、鐵路線路帶狀地形圖的測設,公路管線地形圖的測設,配合測深儀可以用于測水庫地形圖,航 海海洋測圖等等。3,放樣,施工放樣是測量一個應用分支,它要求通過一定方法采用一定儀器把人為設計好的點位在實地給標定出來,過去采用常規的放樣方法很多,如經緯儀交會放樣,全站儀的邊角放樣等等,一般要放樣出一個設計點位時,往往需要來回移動目標,而且要2-3人操作,同時在放樣過程中還要求點間通視情況良好,在生產應用上效率不是很高。有時放樣中遇到困難的情況會借助于很多方法才能放樣,如果采用RTK技術放樣時,僅需把設計好的點位坐標輸入到電子手簿中,背著GPS接收機,它會提醒你走到要放樣點的位置,既迅速又方便,由于GPS是通過坐標來直接放樣的,而且精度很高也很均勻,因而在外業放樣中效率會大大提高,且只需一個人操作。
控制測量是場區內的控制點的測量,也就是圖根點,比碎部測量高一級別 碎部測量就是用控制測量點測量得到的數據,精度比控制測量低一級
地籍控制測量的精度是以界址點的精度和地籍圖的精度為依據制定的。一般情況下,界址點坐標精度要等于或高于其地籍圖的比例尺精度,如果地籍圖根控制點的精度能滿足界址點坐標精度的要求,則也能滿足測繪地籍圖的精度要求。